Montreal Math Club

Mathematics students in Montreal - Étudiants de mathématiques à Montréal
HomeHome  CalendarCalendar  FAQFAQ  SearchSearch  MemberlistMemberlist  UsergroupsUsergroups  RegisterRegister  Log in  

Share | 

 23rd Iranian Mathematical Olympiad 2008

Go down 

Posts : 100
Join date : 2009-11-05
Age : 35
Location : Right behind you

PostSubject: 23rd Iranian Mathematical Olympiad 2008   Tue Feb 23, 2010 4:12 pm

Find all functions f:R^+ to R^+, such that for all x,y \in R^+ we have (x+y)f(f(x)y)=x^2f(f(x)+f(y)), where R^+ denotes the set of positive real numbers. Exclamation
Back to top Go down
View user profile
23rd Iranian Mathematical Olympiad 2008
Back to top 
Page 1 of 1
 Similar topics
» MOA-2008-BLG-310Lb - planet in the Galactic Bulge
» Jan 23rd-24th 2016 Snow Maps Only
» Post-disqualification under GPPB Resolution 01-2008
» Psalm 23 (for the workplace)
» Centurions tanks in service in Berlin area

Permissions in this forum:You cannot reply to topics in this forum
Montreal Math Club :: Mathematics :: Problem Solving-
Jump to: