Montreal Math Club

Mathematics students in Montreal - Étudiants de mathématiques à Montréal
HomeHome  CalendarCalendar  FAQFAQ  SearchSearch  MemberlistMemberlist  UsergroupsUsergroups  RegisterRegister  Log in  

Share | 

 Bulgarian National Olympiad 2006

Go down 

Posts : 100
Join date : 2009-11-05
Age : 34
Location : Right behind you

PostSubject: Bulgarian National Olympiad 2006   Tue Feb 23, 2010 4:08 pm

[Aleksandar Ivanov] Consider the set A={1,2,3,...,2^n}, n\geq 2. Find the number of the subsets B of A, such that if the sum of two elements of A is a power of 2 then exactly one of them belongs to B. bounce
Back to top Go down
View user profile
Bulgarian National Olympiad 2006
Back to top 
Page 1 of 1
 Similar topics
» Pls explain- National Budget Circular 517 dated dec 22, 2008.
» AO 339 and National Budget Circular 446 and 446-A Series of 1995 and 1998
» Bow sign in 3 national leader's hand - 2 indian president and one british queen have
» National Service Memories of Osnabruck
» national service

Permissions in this forum:You cannot reply to topics in this forum
Montreal Math Club :: Mathematics :: Problem Solving-
Jump to: