Montreal Math Club

Mathematics students in Montreal - Étudiants de mathématiques à Montréal
 
HomeHome  CalendarCalendar  FAQFAQ  SearchSearch  MemberlistMemberlist  UsergroupsUsergroups  RegisterRegister  Log in  

Share | 
 

 [SOLVED] Number theory

Go down 
AuthorMessage
Mohammad
Descartes
Descartes
avatar

Posts : 100
Join date : 2009-11-05
Age : 35
Location : Right behind you

PostSubject: [SOLVED] Number theory   Sun Nov 08, 2009 12:51 pm

Basketball
Here is an easy problem in number theory,my favorite part of mathematics,
uploading.com Number%2Btheory.pdf/ bounce
Back to top Go down
View user profile
Bruno
Admin
avatar

Posts : 184
Join date : 2009-09-15
Age : 31
Location : the infinite, frictionless plane of uniform density

PostSubject: Re: [SOLVED] Number theory   Sun Nov 08, 2009 1:38 pm

What about 2? One of A,B must contain 1 (say A), and then A+A contains 2...
Back to top Go down
View user profile http://mathclub.forumotion.com
peyman
Euclid
Euclid
avatar

Posts : 49
Join date : 2009-11-06
Age : 95
Location : dense in the universe

PostSubject: Re: [SOLVED] Number theory   Sun Nov 08, 2009 2:30 pm

Mohammad wrote:
Basketball
Here is an easy problem in number theory,my favorite part of mathematics,
uploading.com Number%2Btheory.pdf/ bounce

waiting 60 seconds Sleep
Back to top Go down
View user profile
Mohammad
Descartes
Descartes
avatar

Posts : 100
Join date : 2009-11-05
Age : 35
Location : Right behind you

PostSubject: Re: [SOLVED] Number theory   Sun Nov 08, 2009 9:29 pm

forget about 1+1=2 Very Happy
Back to top Go down
View user profile
Bruno
Admin
avatar

Posts : 184
Join date : 2009-09-15
Age : 31
Location : the infinite, frictionless plane of uniform density

PostSubject: Re: [SOLVED] Number theory   Sun Nov 08, 2009 11:04 pm

Hello!
Here is my solution. cat
Back to top Go down
View user profile http://mathclub.forumotion.com
Mohammad
Descartes
Descartes
avatar

Posts : 100
Join date : 2009-11-05
Age : 35
Location : Right behind you

PostSubject: Re: [SOLVED] Number theory   Sun Nov 08, 2009 11:08 pm

Perfect, well done! bounce
Back to top Go down
View user profile
Mohammad
Descartes
Descartes
avatar

Posts : 100
Join date : 2009-11-05
Age : 35
Location : Right behind you

PostSubject: Generalization   Sun Nov 08, 2009 11:32 pm

Generalization

For n=2k k\ge 1, of course the obvious candidate is not unique. Simply for example take n=4k with x\in P_{4k} and y\in P_{4k+2}. Another partitioning is P_{4k}-x\cup {y}, P_{4k+2}-y\cup {x}, so you can exchange every two numbers and get new partitioning, so no uniqueness and actually infinite numbers of partitioning. bounce
Back to top Go down
View user profile
Bruno
Admin
avatar

Posts : 184
Join date : 2009-09-15
Age : 31
Location : the infinite, frictionless plane of uniform density

PostSubject: Re: [SOLVED] Number theory   Mon Nov 09, 2009 12:13 am

Good! afro
Back to top Go down
View user profile http://mathclub.forumotion.com
Sponsored content




PostSubject: Re: [SOLVED] Number theory   

Back to top Go down
 
[SOLVED] Number theory
Back to top 
Page 1 of 1
 Similar topics
-
» simple number flashcards 1-20
» THE NUMBER 11
» number 8?
» Medicare Number for GSV
» Important dream the number "45= PRESERVATION."

Permissions in this forum:You cannot reply to topics in this forum
Montreal Math Club :: Mathematics :: Problem Solving :: Solved problems-
Jump to: