Montreal Math Club

Mathematics students in Montreal - Étudiants de mathématiques à Montréal
 
HomeHome  CalendarCalendar  FAQFAQ  SearchSearch  MemberlistMemberlist  UsergroupsUsergroups  RegisterRegister  Log in  

Share | 
 

 Number Species

Go down 
AuthorMessage
nick
Euclid
Euclid
avatar

Posts : 95
Join date : 2009-09-15
Age : 56
Location : Alexandria

PostSubject: Number Species   Wed Jan 18, 2012 7:25 am

Hi all,

I have a good news.

I have started a Romanian article about Species in Wikipedia : http://ro.wikipedia.org/wiki/Specii_de_numere

The title is "Number Species".

By vulgarisation, a species becomes in my article a multiset of permutation groups.

Q: Then, why an article about species, and not an article about permutation groups ?
A:
1) The Theory of Species adds combinatorial meaning and more ; it is not just equivalent to the theory of permutation group.
2) The Theory of Species offers a systematical description of many combinatorial objects.
3) The Theory of Species offers a tool, the e.g.f., to quickly obtain numerical results on combinatorial questions.
4) The Theory of Species offers a foundation for the rigurous meaning of the gramatical preposition OF.
5) The Theory of Species open a generalisation - at the same level of understanding of cardinal and ordinal numbers
Smile and so on....
6) Computer Scientists need a simplified approach rather then a sophisticated algebraical one.
7) Ingineers need a simplified explanation of what field (line), group (vector space) and what "degree" of liberty could means.
Smile and so on...

I use French as metalanguage as well as diagrams.

I am also planning to insert combinatorial definitions whereever is possible Very Happy


­­
Back to top Go down
View user profile
 
Number Species
Back to top 
Page 1 of 1
 Similar topics
-
» simple number flashcards 1-20
» THE NUMBER 11
» number 8?
» Medicare Number for GSV
» Important dream the number "45= PRESERVATION."

Permissions in this forum:You cannot reply to topics in this forum
Montreal Math Club :: Mathematics :: Combinatorics-
Jump to: